Assessment of MJO prediction in operational models: NCEP CFSv2 and ECMWF VarEPS

Hyemi Kim

School of Marine and Atmospheric Sciences,
Stony Brook Univ.

In collaboration with P. Webster, V. Toma (GaTech) and D. Kim (Columbia Univ)
Submitted to J. Climate

Outline

Prediction skill

Dependency on initial/target amplitude

Dependency on initial/target phase

- Amplitude change
- Propagation speed
- Summary

Background

What is MJO?

- Discovered by **Madden and Julian** (1971).
- MJO is an tropical intraseasonal oscillation of enhanced and suppressed convection with a period of 20-70 days.

Evolution

MJO tends to develop in the Indian
 Ocean and propagate eastward

Impacts

• Monsoon, ENSO, Tropical cyclone, Aerosol, Winter Snowstorms in the US, ...

OLR: shading U850: contour

Background

Model	Corr=0.5	Initialization	Period	reference
CFSv2	~20 days	Every day	1999-2010	Wang et al. (2013)
CFSv1	~15 days	15 different dates per month	1982-2004	Seo et al. (2009)
GloSea4 (HadGEM3)	~17 days	Once per week	1989-2002	Arribas et al. (2011)
POAMA	~20 days	Once per month	1980-2006	Rashid et al. (2010)
ECMWF Cy32r3	~23 days	Once per month	1989-2008	Vitart et al. (2010)
SNU CGCM	~ 18 days	Every 5 day	1980-2007	Kang and Kim (2010)
CCCma GCM3	~ 6 days	Once per month	1969-2003	Lin et al. (2008)

The ECMWF VarEPS-monthly forecasting system

- A 51-member ensemble is integrated for 32 days twice a week (Mondays and Thursdays at 00Z)
- Atmospheric component: IFS with the latest operational cycle and with a T639L62 resolution till day 10 and T319L62 after day 10.
- Persisted SST anomalies till day 10 and ocean-atmosphere coupling from day 10 till day 32.
- Oceanic component: HOPE (from Max Plank Institute) with a zonal resolution of 1.4 degrees and 29 vertical levels
- Coupling: OASIS (CERFACS). Coupling every 3 hours.
- 5-member ensemble integrated at the same day and same month as the real-time time forecast over the past 18 years with initial conditions from ERA Interim.

Data

Hindcasts of the coupled climate models

	NCEP CFSv2	ECMWF VarEPS
Resolution	T126 L64	T319 L62
Ensembles	4	5
Forecast days	45	32
Initialization	Every day CFSR	Twice per week ERA interim
Period	2000-2009, 3650 cases	1993~2009, 1836 cases

Data

Variables

OLR, U850, U200

Observations

OLR (NOAA/AVHRR), U850, U200 (ERAI)

1981-2010

RMM index (WH04)

Forecasts are projected into combined EOFs

Definition of MJO

Methodology

Bivariate ACC

$$COR(\tau) = \frac{\sum_{t=1}^{N} [a_1(t)b_1(t,\tau) + a_2(t)b_2(t,\tau)]}{\sqrt{\sum_{i=1}^{N} [a_1^2(t) + a_2^2(t)]} \sqrt{\sum_{i=1}^{N} [b_1^2(t,\tau) + b_2^2(t,\tau)]}}$$

Amplitude

AMP (t) =
$$\sqrt{a1(t)^2 + a2(t)^2}$$

Gottschalck et al. (2010) Lin et al. (2008)

Strong MJO > 1.5 (~32%) Weak/no MJO < 1.0 (~32%)

Phase speed

ANG (t) =
$$tan^{-1} [a2(t)/a1(t)]$$

- a1(t) and a2(t) are the verification RMM1 and RMM2 at time t
- $b1(t,\tau)$ and $b2(t,\tau)$ are the respective forecasts for time t for a lead time of τ days
- N is the number of forecasts.

Skill dependency on initial MJO amplitude

Skill dependency on initial/target MJO amplitude

- The initially strong MJO clearly possesses a greater predictive skill compared to the initially weak MJO in both the hindcasts.
- When forecast is targeting days with strong MJO signal, both systems are able to make useful prediction about 30 days in advance.

The source of RMM prediction skill

Bivariate correlation

- Figures show the prediction skill decomposed by different variables used in RMM index
- The forecast skill of a strong MJO is dominated by the skill of circulation-associated anomalies rather than the convective anomalies
- Better representation of convection and its interaction with large-scale circulation in dynamical models is crucial to extend the MJO prediction skill

Skill dependency on MJO phases

Propagating and non-propagating MJO

- Both hindcasts are able to represent the eastward propagation to some extent, but their fidelity to simulate the propagation of convective signal is much limited.
- Over the Indian Ocean, the amplitude of the OLR anomaly decreases rapidly while the amplitude of zonal wind anomaly is maintained.
- The zonal winds show slower eastward propagation speeds compared to the observed.

OLR: shading

U850: contour (purple line is the zero line)

Evolution of MJO amplitude (Strong MJO case)

 MJO amplitude increases gradually as the prediction approaches a strong MJO and the amplitude decreases after reaching a strong MJO category.

MJO phase speed

- The 20-days averaged phase speed (°/day)
- The predicted MJO is slower than observed

MJO composite (phase-space diagram)

- Maritime Continent barrier
- Rapid drop of MJO amplitude
- Slow propagation speed
- → Barrier for the MJO prediction

* dots: 5-days interval

Summary

- MJO is predictable (ACC>0.5) until 4 weeks forecast lead-time in VarEPS and 3 weeks in CFSv2, while the skill varies with the phase and strength of the MJO in the initial conditions.
- When forecast is targeting days with strong MJO signal, both systems are able to make useful prediction (ACC>0.5) about 30 days in advance.
- The MJO prediction skill of the two systems is dominated by the skill to predict large-scale circulation anomalies rather than that to forecast convective anomalies.
- The propagation of the MJO through the Maritime Continent is not properly represented in both systems.
- Two forecast systems possess same issue: the too-fast decrease of the MJO amplitude and the too-slow propagation speed.